nixpkgs/pkgs/applications/science/logic/hol_light/default.nix
Marco Maggesi 4e5db40581 Update HOL Light to version 20100820 (rev57 on google code).
Also replace the monolitic derivation hol_light_binaries with smaller
derivations.  Now the installation works as follows:

# Install the base system and a script "start_hol_light"
$ nix-env -i hol_light_sources hol_light

# Install a checkpointed executable with the core library preloaded
$ nix-env -i hol_light_core_dmtcp

# Install HOL Light binaries preloaded with other specific libraries:
$ nix-env -i hol_light_multivariate_dmtcp
$ nix-env -i hol_light_complex_dmtcp
$ nix-env -i hol_light_sosa_dmtcp
$ nix-env -i hol_light_card_dmtcp


svn path=/nixpkgs/trunk/; revision=23815
2010-09-15 21:41:18 +00:00

55 lines
1.8 KiB
Nix

{stdenv, writeText, writeTextFile, ocaml, camlp5_transitional, hol_light_sources}:
let
version = hol_light_sources.version;
camlp5 = camlp5_transitional;
hol_light_src_dir = "${hol_light_sources}/lib/hol_light/src";
pa_j_cmo = stdenv.mkDerivation {
name = "pa_j.cmo";
inherit ocaml camlp5;
buildInputs = [ ocaml camlp5 ];
buildCommand = ''
ocamlc -c \
-pp "camlp5r pa_lexer.cmo pa_extend.cmo q_MLast.cmo" \
-I "${camlp5}/lib/ocaml/camlp5" \
-o $out \
"${hol_light_src_dir}/pa_j_`ocamlc -version | cut -c1-4`.ml"
'';
};
start_ml = writeText "start.ml" ''
Topdirs.dir_directory "${hol_light_src_dir}";;
Topdirs.dir_directory "${camlp5}/lib/ocaml/camlp5";;
Topdirs.dir_load Format.std_formatter "camlp5o.cma";;
Topdirs.dir_load Format.std_formatter "${pa_j_cmo}";;
#use "${hol_light_src_dir}/make.ml";;
'';
in
writeTextFile {
name = "hol_light-${version}";
destination = "/bin/start_hol_light";
executable = true;
text = ''
#!/bin/sh
exec ${ocaml}/bin/ocaml -init ${start_ml}
'';
} // {
inherit (hol_light_sources) version src;
meta = {
description = "An interactive theorem prover based on Higher-Order Logic.";
longDescription = ''
HOL Light is a computer program to help users prove interesting mathematical
theorems completely formally in Higher-Order Logic. It sets a very exacting
standard of correctness, but provides a number of automated tools and
pre-proved mathematical theorems (e.g., about arithmetic, basic set theory and
real analysis) to save the user work. It is also fully programmable, so users
can extend it with new theorems and inference rules without compromising its
soundness.
'';
homepage = http://www.cl.cam.ac.uk/~jrh13/hol-light/;
license = "BSD";
};
}