{ config, pkgs, ... }: with pkgs.lib; let luks = config.boot.initrd.luks; openCommand = { name, device, keyFile, keyFileSize, allowDiscards, ... }: '' # Wait for luksRoot to appear, e.g. if on a usb drive. # XXX: copied and adapted from stage-1-init.sh - should be # available as a function. if ! test -e ${device}; then echo -n "waiting 10 seconds for device ${device} to appear..." for try in $(seq 10); do sleep 1 if test -e ${device}; then break; fi echo -n . done echo "ok" fi ${optionalString (keyFile != null) '' if ! test -e ${keyFile}; then echo -n "waiting 10 seconds for key file ${keyFile} to appear..." for try in $(seq 10); do sleep 1 if test -e ${keyFile}; then break; fi echo -n . done echo "ok" fi ''} # open luksRoot and scan for logical volumes cryptsetup luksOpen ${device} ${name} ${optionalString allowDiscards "--allow-discards"} \ ${optionalString (keyFile != null) "--key-file=${keyFile} ${optionalString (keyFileSize != null) "--keyfile-size=${toString keyFileSize}"}"} ''; isPreLVM = f: f.preLVM; preLVM = filter isPreLVM luks.devices; postLVM = filter (f: !(isPreLVM f)) luks.devices; in { options = { boot.initrd.luks.enable = mkOption { default = false; description = "Obsolete."; }; boot.initrd.luks.mitigateDMAAttacks = mkOption { default = true; description = '' Unless enabled, encryption keys can be easily recovered by an attacker with physical access to any machine with PCMCIA, ExpressCard, ThunderBolt or FireWire port. More information: http://en.wikipedia.org/wiki/DMA_attack This option blacklists FireWire drivers, but doesn't remove them. You can manually load the drivers if you need to use a FireWire device, but don't forget to unload them! ''; }; boot.initrd.luks.cryptoModules = mkOption { default = [ "aes" "aes_generic" "aes_x86_64" "aes_i586" "blowfish" "twofish" "serpent" "cbc" "xts" "lrw" "sha256" "sha1" "sha2" ]; description = '' A list of cryptographic kernel modules needed to decrypt the root device(s). The default includes all common modules. ''; }; boot.initrd.luks.devices = mkOption { default = [ ]; example = [ { name = "luksroot"; device = "/dev/sda3"; preLVM = true; } ]; description = '' The list of devices that should be decrypted using LUKS before trying to mount the root partition. This works for both LVM-over-LUKS and LUKS-over-LVM setups. The devices are decrypted to the device mapper names defined. Make sure that initrd has the crypto modules needed for decryption. ''; type = types.listOf types.optionSet; options = { name = mkOption { example = "luksroot"; type = types.string; description = "Named to be used for the generated device in /dev/mapper."; }; device = mkOption { example = "/dev/sda2"; type = types.string; description = "Path of the underlying block device."; }; keyFile = mkOption { default = null; example = "/dev/sdb1"; type = types.nullOr types.string; description = '' The name of the file (can be a raw device or a partition) that should be used as the decryption key for the encrypted device. If not specified, you will be prompted for a passphrase instead. ''; }; keyFileSize = mkOption { default = null; example = 4096; type = types.nullOr types.int; description = '' The size of the key file. Use this if only the beginning of the key file should be used as a key (often the case if a raw device or partition is used as key file). If not specified, the whole keyFile will be used decryption, instead of just the first keyFileSize bytes. ''; }; preLVM = mkOption { default = true; type = types.bool; description = "Whether the luksOpen will be attempted before LVM scan or after it."; }; allowDiscards = mkOption { default = false; type = types.bool; description = '' Whether to allow TRIM requests to the underlying device. This option has security implications, please read the LUKS documentation before activating in. ''; }; }; }; }; config = mkIf (luks.devices != []) { # actually, sbp2 driver is the one enabling the DMA attack, but this needs to be tested boot.blacklistedKernelModules = optionals luks.mitigateDMAAttacks ["firewire_ohci" "firewire_core" "firewire_sbp2"]; # Some modules that may be needed for mounting anything ciphered boot.initrd.kernelModules = [ "dm_mod" "dm_crypt" "cryptd" ] ++ luks.cryptoModules; # copy the cryptsetup binary and it's dependencies boot.initrd.extraUtilsCommands = '' cp -pdv ${pkgs.cryptsetup}/sbin/cryptsetup $out/bin # XXX: do we have a function that does this? for lib in $(ldd $out/bin/cryptsetup |grep '=>' |grep /nix/store/ |cut -d' ' -f3); do cp -pdvn $lib $out/lib cp -pvn $(readlink -f $lib) $out/lib done ''; boot.initrd.extraUtilsCommandsTest = '' $out/bin/cryptsetup --version ''; boot.initrd.preLVMCommands = concatMapStrings openCommand preLVM; boot.initrd.postDeviceCommands = concatMapStrings openCommand postLVM; environment.systemPackages = [ pkgs.cryptsetup ]; }; }