# Utility functions. let inherit (builtins) head tail isList stringLength substring lessThan sub listToAttrs attrNames hasAttr; in rec { listOfListsToAttrs = ll : builtins.listToAttrs (map (l : { name = (head l); value = (head (tail l)); }) ll); # Identity function. id = x: x; # accumulates / merges all attr sets until null is fed. # example: sumArgs id { a = 'a'; x = 'x'; } { y = 'y'; x = 'X'; } null # result : { a = 'a'; x = 'X'; y = 'Y'; } innerSumArgs = f : x : y : (if y == null then (f x) else (innerSumArgs f (x // y))); sumArgs = f : innerSumArgs f {}; # Advanced sumArgs version. Hm, twice as slow, I'm afraid. # composedArgs id (x:x//{a="b";}) (x:x//{b=x.a + "c";}) null; # {a="b" ; b="bc";}; innerComposedArgs = f : x : y : (if y==null then (f x) else (if (builtins.isAttrs y) then (innerComposedArgs f (x//y)) else (innerComposedArgs f (y x)))); composedArgs = f: innerComposedArgs f {}; defaultMergeArg = x : y: if builtins.isAttrs y then y else (y x); defaultMerge = x: y: x // (defaultMergeArg x y); sumTwoArgs = f: x: y: f (defaultMerge x y); foldArgs = merger: f: init: x: let arg=(merger init (defaultMergeArg init x)); in # now add the function with composed args already applied to the final attrs setAttrMerge "passthru" {} (f arg) ( x : x // { function = foldArgs merger f arg; } ); # returns f x // { passthru.fun = y : f (merge x y); } while preserving other passthru names. # example: let ex = applyAndFun (x : removeAttrs x ["fixed"]) (mergeOrApply mergeAttr) {name = 6;}; # usage1 = ex.passthru.fun { name = 7; }; # result: { name = 7;} # usage2 = ex.passthru.fun (a: a // {name = __add a.name 1; }); # result: { a = 7; } # fix usage: # usage3a = ex.passthru.fun (a: a // {name2 = a.fixed.toBePassed; }); # usage3a will fail because toBePassed is not yet given # usage3b usage3a.passthru.fun { toBePassed = "foo";}; # result { name = 7; name2 = "foo"; toBePassed = "foo"; fixed = ; } applyAndFun = f : merge : x : assert (__isAttrs x || __isFunction x); let takeFix = if (__isFunction x) then x else (attr: merge attr x); in setAttrMerge "passthru" {} (fix (fixed : f (takeFix {inherit fixed;}))) ( y : y // { fun = z : applyAndFun f merge (fixed: merge (takeFix fixed) z); funMerge = z : applyAndFun f merge (fixed: let e = takeFix fixed; in merge e (merge e z)); } ); mergeOrApply = merge : x : y : if (__isFunction y) then y x else merge x y; # rec { # an example of how composedArgsAndFun can be used # a = composedArgsAndFun (x : x) { a = ["2"]; meta = { d = "bar";}; }; # # meta.d will be lost ! It's your task to preserve it (eg using a merge function) # b = a.passthru.function { a = [ "3" ]; meta = { d2 = "bar2";}; }; # # instead of passing/ overriding values you can use a merge function: # c = b.passthru.function ( x: { a = x.a ++ ["4"]; }); # consider using (maybeAttr "a" [] x) # } # result: # { # a = { a = ["2"]; meta = { d = "bar"; }; passthru = { function = .. }; }; # b = { a = ["3"]; meta = { d2 = "bar2"; }; passthru = { function = .. }; }; # c = { a = ["3" "4"]; meta = { d2 = "bar2"; }; passthru = { function = .. }; }; # # c2 is equal to c # } composedArgsAndFun = f: foldArgs defaultMerge f {}; # example a = pairMap (x : y : x + y) ["a" "b" "c" "d"]; # result: ["ab" "cd"] innerPairMap = acc: f: l: if l == [] then acc else innerPairMap (acc ++ [(f (head l)(head (tail l)))]) f (tail (tail l)); pairMap = innerPairMap []; # "Fold" a binary function `op' between successive elements of # `list' with `nul' as the starting value, i.e., `fold op nul [x_1 # x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))'. (This is # Haskell's foldr). fold = op: nul: list: if list == [] then nul else op (head list) (fold op nul (tail list)); # Haskell's fold foldl = op: nul: list: if list == [] then nul else fold op (op nul (head list)) (tail list); # Concatenate a list of lists. concatList = x : y : x ++ y; concatLists = fold concatList []; # Concatenate a list of strings. concatStrings = fold (x: y: x + y) ""; # Map and concatenate the result. concatMap = f: list: concatLists (map f list); concatMapStrings = f: list: concatStrings (map f list); # Place an element between each element of a list, e.g., # `intersperse "," ["a" "b" "c"]' returns ["a" "," "b" "," "c"]. intersperse = separator: list: if list == [] || tail list == [] then list else [(head list) separator] ++ (intersperse separator (tail list)); toList = x : if (__isList x) then x else [x]; concatStringsSep = separator: list: concatStrings (intersperse separator list); makeLibraryPath = paths: concatStringsSep ":" (map (path: path + "/lib") paths); # Flatten the argument into a single list; that is, nested lists are # spliced into the top-level lists. E.g., `flatten [1 [2 [3] 4] 5] # == [1 2 3 4 5]' and `flatten 1 == [1]'. flatten = x: if isList x then fold (x: y: (flatten x) ++ y) [] x else [x]; # Return an attribute from nested attribute sets. For instance ["x" # "y"] applied to some set e returns e.x.y, if it exists. The # default value is returned otherwise. # comment: there is also builtins.getAttr ? (is there a better name for this function?) getAttr = attrPath: default: e: let attr = head attrPath; in if attrPath == [] then e else if builtins ? hasAttr && builtins.hasAttr attr e then getAttr (tail attrPath) default (builtins.getAttr attr e) else default; # shortcut for getAttr ["name"] default attrs maybeAttr = name: default: attrs: if (__hasAttr name attrs) then (__getAttr name attrs) else default; # Filter a list using a predicate; that is, return a list containing # every element from `list' for which `pred' returns true. filter = pred: list: fold (x: y: if pred x then [x] ++ y else y) [] list; # Return true if `list' has an element `x': elem = x: list: fold (a: bs: x == a || bs) false list; # Find the sole element in the list matching the specified # predicate, returns `default' if no such element exists, or # `multiple' if there are multiple matching elements. findSingle = pred: default: multiple: list: let found = filter pred list; in if found == [] then default else if tail found != [] then multiple else head found; # Return true iff function `pred' returns true for at least element # of `list'. any = pred: list: if list == [] then false else if pred (head list) then true else any pred (tail list); # Return true iff function `pred' returns true for all elements of # `list'. all = pred: list: if list == [] then true else if pred (head list) then all pred (tail list) else false; # much shorter implementations using map and fold (are lazy as well) # which ones are better? # true if all/ at least one element(s) satisfy f # all = f : l : fold logicalAND true (map f l); # any = f : l : fold logicalOR false (map f l); # Return true if each element of a list is equal, false otherwise. eqLists = xs: ys: if xs == [] && ys == [] then true else if xs == [] || ys == [] then false else head xs == head ys && eqLists (tail xs) (tail ys); # Workaround, but works in stable Nix now. eqStrings = a: b: (a+(substring 0 0 b)) == ((substring 0 0 a)+b); # Determine whether a filename ends in the given suffix. hasSuffix = ext: fileName: let lenFileName = stringLength fileName; lenExt = stringLength ext; in !(lessThan lenFileName lenExt) && substring (sub lenFileName lenExt) lenFileName fileName == ext; hasSuffixHack = a: b: hasSuffix (a+(substring 0 0 b)) ((substring 0 0 a)+b); # Bring in a path as a source, filtering out all Subversion and CVS # directories, as well as backup files (*~). cleanSource = let filter = name: type: let baseName = baseNameOf (toString name); in ! ( # Filter out Subversion and CVS directories. (type == "directory" && (baseName == ".svn" || baseName == "CVS")) || # Filter out backup files. (hasSuffix "~" baseName) ); in src: builtins.filterSource filter src; # Get all files ending with the specified suffices from the given # directory. E.g. `sourceFilesBySuffices ./dir [".xml" ".c"]'. sourceFilesBySuffices = path: exts: let filter = name: type: let base = baseNameOf (toString name); in type != "directory" && any (ext: hasSuffix ext base) exts; in builtins.filterSource filter path; # Return a singleton list or an empty list, depending on a boolean # value. Useful when building lists with optional elements # (e.g. `++ optional (system == "i686-linux") flashplayer'). optional = cond: elem: if cond then [elem] else []; # Return a list or an empty list, dependening on a boolean value. optionals = cond: elems: if cond then elems else []; optionalString = cond: string: if cond then string else ""; # Return the second argument if the first one is true or the empty version # of the second argument. ifEnable = cond: val: if cond then val else if builtins.isList val then [] else if builtins.isAttrs val then {} # else if builtins.isString val then "" else if (val == true || val == false) then false else null; # Return a list of integers from `first' up to and including `last'. range = first: last: if builtins.lessThan last first then [] else [first] ++ range (builtins.add first 1) last; # Return true only if there is an attribute and it is true. checkFlag = attrSet: name: if (name == "true") then true else if (name == "false") then false else if (isInList (getAttr ["flags"] [] attrSet) name) then true else getAttr [name] false attrSet ; logicalOR = x: y: x || y; logicalAND = x: y: x && y; # Input : attrSet, [ [name default] ... ], name # Output : its value or default. getValue = attrSet: argList: name: ( getAttr [name] (if checkFlag attrSet name then true else if argList == [] then null else let x = builtins.head argList; in if (head x) == name then (head (tail x)) else (getValue attrSet (tail argList) name)) attrSet ); # Input : attrSet, [[name default] ...], [ [flagname reqs..] ... ] # Output : are reqs satisfied? It's asserted. checkReqs = attrSet : argList : condList : ( fold logicalAND true (map (x: let name = (head x) ; in ((checkFlag attrSet name) -> (fold logicalAND true (map (y: let val=(getValue attrSet argList y); in (val!=null) && (val!=false)) (tail x))))) condList)) ; isInList = list: x: if (list == []) then false else if (x == (head list)) then true else isInList (tail list) x; uniqList = {inputList, outputList ? []}: if (inputList == []) then outputList else let x=head inputList; newOutputList = outputList ++ (if (isInList outputList x) then [] else [x]); in uniqList {outputList=newOutputList; inputList = (tail inputList);}; uniqListExt = {inputList, outputList ? [], getter ? (x : x), compare ? (x: y: x==y)}: if (inputList == []) then outputList else let x=head inputList; isX = y: (compare (getter y) (getter x)); newOutputList = outputList ++ (if any isX outputList then [] else [x]); in uniqListExt {outputList=newOutputList; inputList = (tail inputList); inherit getter compare; }; condConcat = name: list: checker: if list == [] then name else if checker (head list) then condConcat (name + (head (tail list))) (tail (tail list)) checker else condConcat name (tail (tail list)) checker; # Merge sets of attributes and use the function f to merge # attributes values. zip = f: sets: builtins.listToAttrs (map (name: { inherit name; value = f name (map (__getAttr name) (filter (__hasAttr name) sets)); }) (concatMap builtins.attrNames sets)); # divide a list in two depending on the evaluation of a predicate. partition = pred: fold (h: t: if pred h then { right = [h] ++ t.right; wrong = t.wrong; } else { right = t.right; wrong = [h] ++ t.wrong; } ) { right = []; wrong = []; }; # Take a function and evaluate it with its own returned value. fix = f: (rec { result = f result; }).result; # flatten a list of elements by following the properties of the elements. # next : return the list of following elements. # seen : lists of elements already visited. # default: result if 'x' is empty. # x : list of values that have to be processed. uniqFlatten = next: seen: default: x: if x == [] then default else let h = head x; t = tail x; n = next h; in if elem h seen then uniqFlatten next seen default t else uniqFlatten next (seen ++ [h]) (default ++ [h]) (n ++ t) ; /* If. ThenElse. Always. */ # create "if" statement that can be dealyed on sets until a "then-else" or # "always" set is reached. When an always set is reached the condition # is ignore. isIf = attrs: (typeOf attrs) == "if"; mkIf = condition: thenelse: if isIf thenelse then mkIf (condition && thenelse.condition) thenelse.thenelse else { _type = "if"; inherit condition thenelse; }; isNotdef = attrs: (typeOf attrs) == "notdef"; mkNotdef = {_type = "notdef";}; isThenElse = attrs: (typeOf attrs) == "then-else"; mkThenElse = attrs: assert attrs ? thenPart && attrs ? elsePart; attrs // { _type = "then-else"; }; isAlways = attrs: (typeOf attrs) == "always"; mkAlways = value: { inherit value; _type = "always"; }; pushIf = f: attrs: if isIf attrs then pushIf f ( let val = attrs.thenelse; in # evaluate the condition. if isThenElse val then if attrs.condition then val.thenPart else val.elsePart # ignore the condition. else if isAlways val then val.value # otherwise else f attrs.condition val) else attrs; # take care otherwise you will have to handle this by hand. rmIf = pushIf (condition: val: val); evalIf = pushIf (condition: val: if condition then val else mkNotdef ); delayIf = pushIf (condition: val: # rewrite the condition on sub-attributes. mapAttrs (name: mkIf condition) val ); /* Options. */ mkOption = attrs: attrs // {_type = "option";}; typeOf = x: if (__isAttrs x && x ? _type) then x._type else ""; isOption = attrs: (typeOf attrs) == "option"; addDefaultOptionValues = defs: opts: opts // builtins.listToAttrs (map (defName: { name = defName; value = let defValue = builtins.getAttr defName defs; optValue = builtins.getAttr defName opts; in if typeOf defValue == "option" then # `defValue' is an option. if builtins.hasAttr defName opts then builtins.getAttr defName opts else defValue.default else # `defValue' is an attribute set containing options. # So recurse. if builtins.hasAttr defName opts && builtins.isAttrs optValue then addDefaultOptionValues defValue optValue else addDefaultOptionValues defValue {}; } ) (builtins.attrNames defs)); mergeDefaultOption = name: list: if list != [] && tail list == [] then head list else if all __isFunction list then x: mergeDefaultOption (map (f: f x) list) else if all __isList list then concatLists list else if all __isAttrs list then mergeAttrs list else if all (x: true == x || false == x) list then fold logicalOR false list else if all (x: x == toString x) list then concatStrings list else throw "Cannot merge values."; mergeTypedOption = typeName: predicate: merge: name: list: if all predicate list then merge list else throw "Expect a ${typeName}."; mergeEnableOption = mergeTypedOption "boolean" (x: true == x || false == x) (fold logicalOR false); mergeListOption = mergeTypedOption "list" __isList concatLists; mergeStringOption = mergeTypedOption "string" (x: if builtins ? isString then builtins.isString x else x + "") concatStrings; mergeOneOption = name: list: if list == [] then abort "This case should never happens." else if tail list != [] then throw "Multiple definitions. Only one is allowed for this option." else head list; # Handle the traversal of option sets. All sets inside 'opts' are zipped # and options declaration and definition are separated. If no option are # declared at a specific depth, then the function recurse into the values. # Other cases are handled by the optionHandler which contains two # functions that are used to defined your goal. # - export is a function which takes two arguments which are the option # and the list of values. # - notHandle is a function which takes the list of values are not handle # by this function. handleOptionSets = optionHandler@{export, notHandle, ...}: path: opts: if all __isAttrs opts then zip (attr: opts: let # Compute the path to reach the attribute. name = if path == "" then attr else path + "." + attr; # Divide the definitions of the attribute "attr" between # declaration (isOption) and definitions (!isOption). test = partition isOption opts; decls = test.right; defs = test.wrong; # Return the option declaration and add missing default # attributes. opt = { inherit name; merge = mergeDefaultOption; apply = id; } // (head decls); # Return the list of option sets. optAttrs = map delayIf defs; # return the list of option values. # Remove undefined values that are coming from evalIf. optValues = filter (x: !isNotdef x) (map evalIf defs); in if decls == [] then handleOptionSets optionHandler name optAttrs else addLocation "while evaluating the option ${name}:" ( if tail decls != [] then throw "Multiple options." else export opt optValues ) ) opts else addLocation "while evaluating ${path}:" (notHandle opts); # Merge option sets and produce a set of values which is the merging of # all options declare and defined. If no values are defined for an # option, then the default value is used otherwise it use the merge # function of each option to get the result. mergeOptionSets = noOption: newMergeOptionSets; # ignore argument newMergeOptionSets = handleOptionSets { export = opt: values: opt.apply ( if values == [] then if opt ? default then opt.default else throw "Not defined." else opt.merge (opt.name) values ); notHandle = throw "Used without option declaration."; }; # Keep all option declarations. filterOptionSets = handleOptionSets { export = opt: values: opt; notHandle = {}; }; # Evaluate a list of option sets that would be merged with the # function "merge" which expects two arguments. The attribute named # "require" is used to imports option declarations and bindings. # # * cfg[0-9]: configuration # * cfgSet[0-9]: configuration set # # merge: the function used to merge options sets. # pkgs: is the set of packages available. (nixpkgs) # opts: list of option sets or option set functions. # config: result of this evaluation. fixOptionSetsFun = merge: pkgs: opts: config: let # remove possible mkIf to access the require attribute. noImportConditions = cfgSet0: let cfgSet1 = delayIf cfgSet0; in if cfgSet1 ? require then cfgSet1 // { require = rmIf cfgSet1.require; } else cfgSet1; # call configuration "files" with one of the existing convention. argumentHandler = cfg: let # {..} cfg0 = cfg; # {pkgs, config, ...}: {..} cfg1 = cfg { inherit pkgs config merge; }; # pkgs: config: {..} cfg2 = cfg {} {}; in if __isFunction cfg0 then if builtins.isAttrs cfg1 then cfg1 else builtins.trace "Use '{pkgs, config, ...}:'." cfg2 else cfg0; preprocess = cfg0: let cfg1 = argumentHandler cfg0; cfg2 = noImportConditions cfg1; in cfg2; getRequire = x: toList (getAttr ["require"] [] (preprocess x)); rmRequire = x: removeAttrs (preprocess x) ["require"]; in merge "" ( map rmRequire ( uniqFlatten getRequire [] [] (toList opts) ) ); fixOptionSets = merge: pkgs: opts: fix (fixOptionSetsFun merge pkgs opts); optionAttrSetToDocList = (l: attrs: (if (getAttr ["_type"] "" attrs) == "option" then [({ #inherit (attrs) description; description = if attrs ? description then attrs.description else throw ("No description ${toString l} : ${whatis attrs}"); } //(if attrs ? example then {inherit(attrs) example;} else {} ) //(if attrs ? default then {inherit(attrs) default;} else {} ) //{name = l;} )] else (concatLists (map (s: (optionAttrSetToDocList (l + (if l=="" then "" else ".") + s) (builtins.getAttr s attrs))) (builtins.attrNames attrs))))); innerModifySumArgs = f: x: a: b: if b == null then (f a b) // x else innerModifySumArgs f x (a // b); modifySumArgs = f: x: innerModifySumArgs f x {}; addLocation = if builtins ? addLocation then builtins.addLocation else msg: val: val; debugVal = if builtins ? trace then x: (builtins.trace x x) else x: x; debugXMLVal = if builtins ? trace then x: (builtins.trace (builtins.toXML x) x) else x: x; # this can help debug your code as well - designed to not produce thousands of lines traceWhatis = x : __trace (whatis x) x; traceMarked = str: x: __trace (str + (whatis x)) x; attrNamesToStr = a : concatStringsSep "; " (map (x : "${x}=") (__attrNames a)); whatis = x : if (__isAttrs x) then if (x ? outPath) then "x is a derivation, name ${if x ? name then x.name else ""}, { ${attrNamesToStr x} }" else "x is attr set { ${attrNamesToStr x} }" else if (__isFunction x) then "x is a function" else if (x == []) then "x is an empty list" else if (__isList x) then "x is a list, first item is : ${whatis (__head x)}" else if (x == true) then "x is boolean true" else if (x == false) then "x is boolean false" else if (x == null) then "x is null" else "x is probably a string starting, starting characters: ${__substring 0 50 x}.."; # trace the arguments passed to function and its result traceCall = n : f : a : let t = n2 : x : traceMarked "${n} ${n2}:" x; in t "result" (f (t "arg 1" a)); traceCall2 = n : f : a : b : let t = n2 : x : traceMarked "${n} ${n2}:" x; in t "result" (f (t "arg 1" a) (t "arg 2" b)); traceCall3 = n : f : a : b : c : let t = n2 : x : traceMarked "${n} ${n2}:" x; in t "result" (f (t "arg 1" a) (t "arg 2" b) (t "arg 3" c)); innerClosePropagation = ready: list: if list == [] then ready else if (head list) ? propagatedBuildInputs then innerClosePropagation (ready ++ [(head list)]) ((head list).propagatedBuildInputs ++ (tail list)) else innerClosePropagation (ready ++ [(head list)]) (tail list); closePropagation = list: (uniqList {inputList = (innerClosePropagation [] list);}); stringToCharacters = s : let l = __stringLength s; in if (__lessThan l 1) then [""] else [(__substring 0 1 s)] ++ stringToCharacters (__substring 1 (__sub l 1) s); # should this be implemented as primop ? Yes it should.. escapeShellArg = s : let escapeChar = x : if ( x == "'" ) then "'\"'\"'" else x; in "'" + concatStrings (map escapeChar (stringToCharacters s) ) +"'"; defineShList = name : list : "\n${name}=(${concatStringsSep " " (map escapeShellArg list)})\n"; # this as well :-) arg: http://foo/bar/bz.ext returns bz.ext dropPath = s : if s == "" then "" else let takeTillSlash = left : c : s : if left == 0 then s else if (__substring left 1 s == "/") then (__substring (__add left 1) (__sub c 1) s) else takeTillSlash (__sub left 1) (__add c 1) s; in takeTillSlash (__sub (__stringLength s) 1) 1 s; # calls a function (f attr value ) for each record item. returns a list # should be renamed to mapAttrsFlatten mapRecordFlatten = f : r : map (attr: f attr (builtins.getAttr attr r) ) (attrNames r); # maps a function on each attr value # f = attr : value : .. mapAttrs = f : r : listToAttrs ( mapRecordFlatten (a : v : nv a ( f a v ) ) r); # to be used with listToAttrs (_a_ttribute _v_alue) nv = name : value : { inherit name value; }; # attribute set containing one attribute nvs = name : value : listToAttrs [ (nv name value) ]; # adds / replaces an attribute of an attribute set setAttr = set : name : v : set // (nvs name v); # setAttrMerge (similar to mergeAttrsWithFunc but only merges the values of a particular name) # setAttrMerge "a" [] { a = [2];} (x : x ++ [3]) -> { a = [2 3]; } # setAttrMerge "a" [] { } (x : x ++ [3]) -> { a = [ 3]; } setAttrMerge = name : default : attrs : f : setAttr attrs name (f (maybeAttr name default attrs)); # iterates over a list of attributes collecting the attribute attr if it exists catAttrs = attr : l : fold ( s : l : if (hasAttr attr s) then [(builtins.getAttr attr s)] ++ l else l) [] l; mergeAttr = x : y : x // y; mergeAttrs = fold mergeAttr {}; attrVals = nameList : attrSet : map (x: builtins.getAttr x attrSet) nameList; # Using f = a : b = b the result is similar to // # merge attributes with custom function handling the case that the attribute # exists in both sets mergeAttrsWithFunc = f : set1 : set2 : fold (n: set : if (__hasAttr n set) then setAttr set n (f (__getAttr n set) (__getAttr n set2)) else set ) set1 (__attrNames set2); # merging two attribute set concatenating the values of same attribute names # eg { a = 7; } { a = [ 2 3 ]; } becomes { a = [ 7 2 3 ]; } mergeAttrsConcatenateValues = mergeAttrsWithFunc ( a : b : (toList a) ++ (toList b) ); # merges attributes using //, if a name exisits in both attributes # an error will be triggered unless its listed in mergeLists # so you can mergeAttrsNoOverride { buildInputs = [a]; } { buildInputs = [a]; } {} to get # { buildInputs = [a b]; } # merging buildPhase does'nt really make sense. The cases will be rare where appending /prefixing will fit your needs? # in these cases the first buildPhase will override the second one # ! depreceated, use mergeAttrByFunc instead mergeAttrsNoOverride = { mergeLists ? ["buildInputs" "propagatedBuildInputs"], overrideSnd ? [ "buildPhase" ] } : attrs1 : attrs2 : fold (n: set : setAttr set n ( if (__hasAttr n set) then # merge if elem n mergeLists # attribute contains list, merge them by concatenating then (__getAttr n attrs2) ++ (__getAttr n attrs1) else if elem n overrideSnd then __getAttr n attrs1 else throw "error mergeAttrsNoOverride, attribute ${n} given in both attributes - no merge func defined" else __getAttr n attrs2 # add attribute not existing in attr1 )) attrs1 (__attrNames attrs2); # example usage: # mergeAttrByFunc { # inherit mergeAttrBy; # defined below # buildInputs = [ a b ]; # } { # buildInputs = [ c d ]; # }; # will result in # { mergeAttrsBy = [...]; buildInputs = [ a b c d ]; } # is used by prepareDerivationArgs and can be used when composing using # foldArgs, composedArgsAndFun or applyAndFun. Example: composableDerivation in all-packages.nix mergeAttrByFunc = x : y : let mergeAttrBy2 = { mergeAttrBy=mergeAttr; } // (maybeAttr "mergeAttrBy" {} x) // (maybeAttr "mergeAttrBy" {} y); in mergeAttrs [ x y (mapAttrs ( a : v : # merge special names using given functions if (__hasAttr a x) then if (__hasAttr a y) then v (__getAttr a x) (__getAttr a y) # both have attr, use merge func else (__getAttr a x) # only x has attr else (__getAttr a y) # only y has attr) ) (removeAttrs mergeAttrBy2 # don't merge attrs which are neither in x nor y (filter (a : (! __hasAttr a x) && (! __hasAttr a y) ) (__attrNames mergeAttrBy2)) ) ) ]; mergeAttrsByFuncDefaults = foldl mergeAttrByFunc { inherit mergeAttrBy; }; # sane defaults (same name as attr name so that inherit can be used) mergeAttrBy = # { buildInputs = concatList; [...]; passthru = mergeAttr; [..]; } listToAttrs (map (n : nv n concatList) [ "buildInputs" "propagatedBuildInputs" "configureFlags" "prePhases" "postAll" ]) // listToAttrs (map (n : nv n mergeAttr) [ "passthru" "meta" "cfg" "flags" ]); # returns atribute values as a list flattenAttrs = set : map ( attr : builtins.getAttr attr set) (attrNames set); mapIf = cond : f : fold ( x : l : if (cond x) then [(f x)] ++ l else l) []; # pick attrs subset_attr_names and apply f subsetmap = f : attrs : subset_attr_names : listToAttrs (fold ( attr : r : if __hasAttr attr attrs then r ++ [ ( nv attr ( f (__getAttr attr attrs) ) ) ] else r ) [] subset_attr_names ); # prepareDerivationArgs tries to make writing configurable derivations easier # example: # prepareDerivationArgs { # mergeAttrBy = { # myScript = x : y : x ++ "\n" ++ y; # }; # cfg = { # readlineSupport = true; # }; # flags = { # readline = { # set = { # configureFlags = [ "--with-compiler=${compiler}" ]; # buildInputs = [ compiler ]; # pass = { inherit compiler; READLINE=1; }; # assertion = compiler.dllSupport; # myScript = "foo"; # }; # unset = { configureFlags = ["--without-compiler"]; }; # }; # }; # src = ... # buildPhase = '' ... ''; # name = ... # myScript = "bar"; # }; # if you don't have need for unset you can omit the surrounding set = { .. } attr # all attrs except flags cfg and mergeAttrBy will be merged with the # additional data from flags depending on config settings # It's used in composableDerivation in all-packages.nix. It's also used # heavily in the new python and libs implementation # # should we check for misspelled cfg options? prepareDerivationArgs = args: let args2 = { cfg = {}; flags = {}; } // args; flagName = name : "${name}Support"; cfgWithDefaults = (listToAttrs (map (n : nv (flagName n) false) (attrNames args2.flags))) // args2.cfg; opts = flattenAttrs (mapAttrs (a : v : let v2 = if (v ? set || v ? unset) then v else { set = v; }; n = if (__getAttr (flagName a) cfgWithDefaults) then "set" else "unset"; attr = maybeAttr n {} v2; in if (maybeAttr "assertion" true attr) then attr else throw "assertion of flag ${a} of derivation ${args.name} failed" ) args2.flags ); in removeAttrs (mergeAttrsByFuncDefaults ([args] ++ opts ++ [{ passthru = cfgWithDefaults; }])) ["flags" "cfg" "mergeAttrBy" "fixed" ]; # fixed may be passed as fix argument or such }