# This module creates a virtual machine from the NixOS configuration. # Building the `config.system.build.vm' attribute gives you a command # that starts a KVM/QEMU VM running the NixOS configuration defined in # `config'. The Nix store is shared read-only with the host, which # makes (re)building VMs very efficient. However, it also means you # can't reconfigure the guest inside the guest - you need to rebuild # the VM in the host. On the other hand, the root filesystem is a # read/writable disk image persistent across VM reboots. { config, pkgs, ... }: with pkgs.lib; let vmName = config.networking.hostName; options = { virtualisation.memorySize = mkOption { default = 384; description = '' Memory size (M) of virtual machine. ''; }; virtualisation.diskSize = mkOption { default = 512; description = '' Disk size (M) of virtual machine. ''; }; virtualisation.diskImage = mkOption { default = "./${vmName}.qcow2"; description = '' Path to the disk image containing the root filesystem. The image will be created on startup if it does not exist. ''; }; virtualisation.graphics = mkOption { default = true; description = '' Whether to run QEMU with a graphics window, or access the guest computer serial port through the host tty. ''; }; virtualisation.pathsInNixDB = mkOption { default = []; description = '' The list of paths whose closure is registered in the Nix database in the VM. All other paths in the host Nix store appear in the guest Nix store as well, but are considered garbage (because they are not registered in the Nix database in the guest). ''; }; virtualisation.vlans = mkOption { default = [ 1 ]; example = [ 1 2 ]; description = '' Virtual networks to which the VM is connected. Each number N in this list causes the VM to have a virtual Ethernet interface attached to a separate virtual network on which it will be assigned IP address 192.168.N.M, where M is the index of this VM in the list of VMs. ''; }; virtualisation.writableStore = mkOption { default = false; description = '' If enabled, the Nix store in the VM is made writable by layering an AUFS/tmpfs filesystem on top of the host's Nix store. ''; }; networking.primaryIPAddress = mkOption { default = ""; internal = true; description = "Primary IP address used in /etc/hosts."; }; virtualisation.qemu.options = mkOption { default = ""; example = "-vga std"; description = "Options passed to QEMU."; }; virtualisation.useBootLoader = mkOption { default = false; description = '' If enabled, the virtual machine will be booted using the regular boot loader (i.e., GRUB 1 or 2). This allows testing of the boot loader. If disabled (the default), the VM directly boots the NixOS kernel and initial ramdisk, bypassing the boot loader altogether. ''; }; }; cfg = config.virtualisation; qemuGraphics = if cfg.graphics then "" else "-nographic"; kernelConsole = if cfg.graphics then "" else "console=ttyS0"; ttys = [ "tty1" "tty2" "tty3" "tty4" "tty5" "tty6" ]; # Shell script to start the VM. startVM = '' #! ${pkgs.stdenv.shell} NIX_DISK_IMAGE=$(readlink -f ''${NIX_DISK_IMAGE:-${config.virtualisation.diskImage}}) if ! test -e "$NIX_DISK_IMAGE"; then ${pkgs.qemu_kvm}/bin/qemu-img create -f qcow2 "$NIX_DISK_IMAGE" \ ${toString config.virtualisation.diskSize}M || exit 1 fi # Start Samba (which wants to put its socket and config files in TMPDIR). if [ -z "$TMPDIR" -o -z "$USE_TMPDIR" ]; then TMPDIR=$(mktemp -d nix-vm-smbd.XXXXXXXXXX --tmpdir) fi cd $TMPDIR ${pkgs.vmTools.startSamba} # Start QEMU. exec ${pkgs.qemu_kvm}/bin/qemu-system-x86_64 \ -name ${vmName} \ -m ${toString config.virtualisation.memorySize} \ -net nic,vlan=0,model=virtio \ -chardev socket,id=samba,path=./samba \ -net user,vlan=0,guestfwd=tcp:10.0.2.4:445-chardev:samba''${QEMU_NET_OPTS:+,$QEMU_NET_OPTS} \ ${if cfg.useBootLoader then '' -drive index=0,file=$NIX_DISK_IMAGE,if=virtio,cache=writeback,werror=report \ -drive index=1,file=${bootDisk}/disk.img,if=virtio,boot=on,readonly \ '' else '' -drive file=$NIX_DISK_IMAGE,if=virtio,cache=writeback,werror=report \ -kernel ${config.system.build.toplevel}/kernel \ -initrd ${config.system.build.toplevel}/initrd \ -append "$(cat ${config.system.build.toplevel}/kernel-params) init=${config.system.build.toplevel}/init regInfo=${regInfo} ${kernelConsole} $QEMU_KERNEL_PARAMS" \ ''} \ ${qemuGraphics} \ $QEMU_OPTS \ ${config.virtualisation.qemu.options} ''; regInfo = pkgs.runCommand "reginfo" { exportReferencesGraph = map (x: [("closure-" + baseNameOf x) x]) config.virtualisation.pathsInNixDB; buildInputs = [ pkgs.perl ]; } '' printRegistration=1 perl ${pkgs.pathsFromGraph} closure-* > $out ''; # Generate a hard disk image containing a /boot partition and GRUB # in the MBR. Used when the `useBootLoader' option is set. bootDisk = pkgs.vmTools.runInLinuxVM ( pkgs.runCommand "nixos-boot-disk" { preVM = '' mkdir $out diskImage=$out/disk.img ${pkgs.vmTools.kvm}/bin/qemu-img create -f qcow2 $diskImage "32M" ''; buildInputs = [ pkgs.utillinux ]; } '' # Create a single /boot partition. ${pkgs.parted}/sbin/parted /dev/vda mklabel msdos ${pkgs.parted}/sbin/parted /dev/vda -- mkpart primary ext2 1M -1s . /sys/class/block/vda1/uevent mknod /dev/vda1 b $MAJOR $MINOR . /sys/class/block/vda/uevent ${pkgs.e2fsprogs}/sbin/mkfs.ext3 -L boot /dev/vda1 ${pkgs.e2fsprogs}/sbin/tune2fs -c 0 -i 0 /dev/vda1 # Mount /boot. mkdir /boot mount /dev/vda1 /boot # This is needed for GRUB 0.97, which doesn't know about virtio devices. mkdir /boot/grub echo '(hd0) /dev/vda' > /boot/grub/device.map # Install GRUB and generate the GRUB boot menu. touch /etc/NIXOS mkdir -p /nix/var/nix/profiles ${config.system.build.toplevel}/bin/switch-to-configuration boot umount /boot '' ); in { require = options; boot.loader.grub.device = mkOverride 50 "/dev/vda"; # All the modules the initrd needs to mount the host filesystem via # CIFS. Also use paravirtualised network and block devices for # performance. boot.initrd.availableKernelModules = [ "cifs" "virtio_net" "virtio_pci" "virtio_blk" "virtio_balloon" "nls_utf8" ] ++ optional cfg.writableStore [ "aufs" ]; boot.extraModulePackages = optional cfg.writableStore config.boot.kernelPackages.aufs2; boot.initrd.extraUtilsCommands = '' # We need mke2fs in the initrd. cp ${pkgs.e2fsprogs}/sbin/mke2fs $out/bin # And `ip' (which needs libresolv.so). cp ${pkgs.iproute}/sbin/ip $out/bin cp ${pkgs.glibc}/lib/libresolv.so.* $out/lib ''; boot.initrd.postDeviceCommands = '' # Set up networking. Needed for CIFS mounting. ip link set eth0 up ip addr add 10.0.2.15/24 dev eth0 # If the disk image appears to be empty, run mke2fs to # initialise. FSTYPE=$(blkid -o value -s TYPE /dev/vda || true) if test -z "$FSTYPE"; then mke2fs -t ext3 /dev/vda fi ''; boot.initrd.postMountCommands = '' mkdir -p $targetRoot/boot mount -o remount,ro $targetRoot/nix/store ${optionalString cfg.writableStore '' mkdir /mnt-store-tmpfs mount -t tmpfs -o "mode=755" none /mnt-store-tmpfs mount -t aufs -o dirs=/mnt-store-tmpfs=rw:$targetRoot/nix/store=rr none $targetRoot/nix/store ''} ''; # After booting, register the closure of the paths in # `virtualisation.pathsInNixDB' in the Nix database in the VM. This # allows Nix operations to work in the VM. The path to the # registration file is passed through the kernel command line to # allow `system.build.toplevel' to be included. (If we had a direct # reference to ${regInfo} here, then we would get a cyclic # dependency.) boot.postBootCommands = '' ( source /proc/cmdline if [ -n "$regInfo" ]; then ${config.environment.nix}/bin/nix-store --load-db < $regInfo fi ) ''; virtualisation.pathsInNixDB = [ config.system.build.toplevel ]; # Mount the host filesystem via CIFS, and bind-mount the Nix store # of the host into our own filesystem. We use mkOverride to allow # this module to be applied to "normal" NixOS system configuration, # where the regular value for the `fileSystems' attribute should be # disregarded for the purpose of building a VM test image (since # those filesystems don't exist in the VM). fileSystems = mkOverride 50 ( [ { mountPoint = "/"; device = "/dev/vda"; } { mountPoint = "/hostfs"; device = "//10.0.2.4/qemu"; fsType = "cifs"; options = "guest,sec=none,noperm,noacl"; neededForBoot = true; } { mountPoint = "/nix/store"; device = "/hostfs/nix/store"; fsType = "none"; options = "bind"; neededForBoot = true; } ] ++ optional cfg.useBootLoader { mountPoint = "/boot"; device = "/dev/disk/by-label/boot"; fsType = "ext3"; options = "ro"; noCheck = true; # fsck fails on a r/o filesystem }); swapDevices = mkOverride 50 [ ]; # Starting DHCP brings down eth0, which kills the connection to the # host filesystem and thus deadlocks the system. networking.useDHCP = false; networking.defaultGateway = mkOverride 200 "10.0.2.2"; networking.nameservers = [ "10.0.2.3" ]; networking.interfaces = singleton { name = "eth0"; ipAddress = "10.0.2.15"; }; # Don't run ntpd in the guest. It should get the correct time from KVM. services.ntp.enable = false; system.build.vm = pkgs.runCommand "nixos-vm" {} '' ensureDir $out/bin ln -s ${config.system.build.toplevel} $out/system ln -s ${pkgs.writeScript "run-nixos-vm" startVM} $out/bin/run-${vmName}-vm ''; # sendfile() is currently broken over CIFS, so fix it here for all # configurations that use Apache. services.httpd.extraConfig = '' EnableSendFile Off ''; # When building a regular system configuration, override whatever # video driver the host uses. services.xserver.videoDriver = mkOverride 50 null; services.xserver.videoDrivers = mkOverride 50 [ "cirrus" "vesa" ]; services.xserver.defaultDepth = mkOverride 50 0; services.xserver.monitorSection = '' # Set a higher refresh rate so that resolutions > 800x600 work. HorizSync 30-140 VertRefresh 50-160 ''; services.mingetty.ttys = ttys ++ optional (!cfg.graphics) "ttyS0"; # Wireless won't work in the VM. networking.enableWLAN = mkOverride 50 false; }