/* This module enables a simple firewall. The firewall can be customised in arbitrary ways by setting ‘networking.firewall.extraCommands’. For modularity, the firewall uses several chains: - ‘nixos-fw-input’ is the main chain for input packet processing. - ‘nixos-fw-log-refuse’ and ‘nixos-fw-refuse’ are called for refused packets. (The former jumps to the latter after logging the packet.) If you want additional logging, or want to accept certain packets anyway, you can insert rules at the start of these chain. - ‘nixos-fw-accept’ is called for accepted packets. If you want additional logging, or want to reject certain packets anyway, you can insert rules at the start of this chain. */ { config, lib, pkgs, ... }: with lib; let cfg = config.networking.firewall; helpers = '' # Helper command to manipulate both the IPv4 and IPv6 tables. ip46tables() { iptables -w "$@" ${optionalString config.networking.enableIPv6 '' ip6tables -w "$@" ''} } ''; writeShScript = name: text: let dir = pkgs.writeScriptBin name '' #! ${pkgs.stdenv.shell} -e ${text} ''; in "${dir}/bin/${name}"; startScript = writeShScript "firewall-start" '' ${helpers} # Flush the old firewall rules. !!! Ideally, updating the # firewall would be atomic. Apparently that's possible # with iptables-restore. ip46tables -D INPUT -j nixos-fw 2> /dev/null || true for chain in nixos-fw nixos-fw-accept nixos-fw-log-refuse nixos-fw-refuse FW_REFUSE; do ip46tables -F "$chain" 2> /dev/null || true ip46tables -X "$chain" 2> /dev/null || true done # The "nixos-fw-accept" chain just accepts packets. ip46tables -N nixos-fw-accept ip46tables -A nixos-fw-accept -j ACCEPT # The "nixos-fw-refuse" chain rejects or drops packets. ip46tables -N nixos-fw-refuse ${if cfg.rejectPackets then '' # Send a reset for existing TCP connections that we've # somehow forgotten about. Send ICMP "port unreachable" # for everything else. ip46tables -A nixos-fw-refuse -p tcp ! --syn -j REJECT --reject-with tcp-reset ip46tables -A nixos-fw-refuse -j REJECT '' else '' ip46tables -A nixos-fw-refuse -j DROP ''} # The "nixos-fw-log-refuse" chain performs logging, then # jumps to the "nixos-fw-refuse" chain. ip46tables -N nixos-fw-log-refuse ${optionalString cfg.logRefusedConnections '' ip46tables -A nixos-fw-log-refuse -p tcp --syn -j LOG --log-level info --log-prefix "rejected connection: " ''} ${optionalString (cfg.logRefusedPackets && !cfg.logRefusedUnicastsOnly) '' ip46tables -A nixos-fw-log-refuse -m pkttype --pkt-type broadcast \ -j LOG --log-level info --log-prefix "rejected broadcast: " ip46tables -A nixos-fw-log-refuse -m pkttype --pkt-type multicast \ -j LOG --log-level info --log-prefix "rejected multicast: " ''} ip46tables -A nixos-fw-log-refuse -m pkttype ! --pkt-type unicast -j nixos-fw-refuse ${optionalString cfg.logRefusedPackets '' ip46tables -A nixos-fw-log-refuse \ -j LOG --log-level info --log-prefix "rejected packet: " ''} ip46tables -A nixos-fw-log-refuse -j nixos-fw-refuse # The "nixos-fw" chain does the actual work. ip46tables -N nixos-fw # Perform a reverse-path test to refuse spoofers # For now, we just drop, as the raw table doesn't have a log-refuse yet ${optionalString (kernelHasRPFilter && cfg.checkReversePath) '' if ! ip46tables -A PREROUTING -t raw -m rpfilter --invert -j DROP; then echo "<2>failed to initialise rpfilter support" >&2 fi ''} # Accept all traffic on the trusted interfaces. ${flip concatMapStrings cfg.trustedInterfaces (iface: '' ip46tables -A nixos-fw -i ${iface} -j nixos-fw-accept '')} # Accept packets from established or related connections. ip46tables -A nixos-fw -m conntrack --ctstate ESTABLISHED,RELATED -j nixos-fw-accept # Accept connections to the allowed TCP ports. ${concatMapStrings (port: '' ip46tables -A nixos-fw -p tcp --dport ${toString port} -j nixos-fw-accept '' ) cfg.allowedTCPPorts } # Accept connections to the allowed TCP port ranges. ${concatMapStrings (rangeAttr: let range = toString rangeAttr.from + ":" + toString rangeAttr.to; in '' ip46tables -A nixos-fw -p tcp --dport ${range} -j nixos-fw-accept '' ) cfg.allowedTCPPortRanges } # Accept packets on the allowed UDP ports. ${concatMapStrings (port: '' ip46tables -A nixos-fw -p udp --dport ${toString port} -j nixos-fw-accept '' ) cfg.allowedUDPPorts } # Accept packets on the allowed UDP port ranges. ${concatMapStrings (rangeAttr: let range = toString rangeAttr.from + ":" + toString rangeAttr.to; in '' ip46tables -A nixos-fw -p udp --dport ${range} -j nixos-fw-accept '' ) cfg.allowedUDPPortRanges } # Accept IPv4 multicast. Not a big security risk since # probably nobody is listening anyway. #iptables -A nixos-fw -d 224.0.0.0/4 -j nixos-fw-accept # Optionally respond to ICMPv4 pings. ${optionalString cfg.allowPing '' iptables -w -A nixos-fw -p icmp --icmp-type echo-request ${optionalString (cfg.pingLimit != null) "-m limit ${cfg.pingLimit} " }-j nixos-fw-accept ''} # Accept all ICMPv6 messages except redirects and node # information queries (type 139). See RFC 4890, section # 4.4. ${optionalString config.networking.enableIPv6 '' ip6tables -A nixos-fw -p icmpv6 --icmpv6-type redirect -j DROP ip6tables -A nixos-fw -p icmpv6 --icmpv6-type 139 -j DROP ip6tables -A nixos-fw -p icmpv6 -j nixos-fw-accept ''} ${cfg.extraCommands} # Reject/drop everything else. ip46tables -A nixos-fw -j nixos-fw-log-refuse # Enable the firewall. ip46tables -A INPUT -j nixos-fw ''; stopScript = writeShScript "firewall-stop" '' ${helpers} # Clean up in case reload fails ip46tables -D INPUT -j nixos-drop 2>/dev/null || true # Clean up after added ruleset ip46tables -D INPUT -j nixos-fw 2>/dev/null || true ${optionalString (kernelHasRPFilter && cfg.checkReversePath) '' if ! ip46tables -D PREROUTING -t raw -m rpfilter --invert -j DROP; then echo "<2>failed to stop rpfilter support" >&2 fi ''} ${cfg.extraStopCommands} ''; reloadScript = writeShScript "firewall-reload" '' ${helpers} # Create a unique drop rule ip46tables -D INPUT -j nixos-drop 2>/dev/null || true ip46tables -F nixos-drop 2>/dev/null || true ip46tables -X nixos-drop 2>/dev/null || true ip46tables -N nixos-drop ip46tables -A nixos-drop -j DROP # Don't allow traffic to leak out until the script has completed ip46tables -A INPUT -j nixos-drop if ${startScript}; then ip46tables -D INPUT -j nixos-drop 2>/dev/null || true else echo "Failed to reload firewall... Stopping" ${stopScript} exit 1 fi ''; kernelPackages = config.boot.kernelPackages; kernelHasRPFilter = kernelPackages.kernel.features.netfilterRPFilter or false; kernelCanDisableHelpers = kernelPackages.kernel.features.canDisableNetfilterConntrackHelpers or false; in { ###### interface options = { networking.firewall.enable = mkOption { type = types.bool; default = true; description = '' Whether to enable the firewall. This is a simple stateful firewall that blocks connection attempts to unauthorised TCP or UDP ports on this machine. It does not affect packet forwarding. ''; }; networking.firewall.logRefusedConnections = mkOption { type = types.bool; default = true; description = '' Whether to log rejected or dropped incoming connections. ''; }; networking.firewall.logRefusedPackets = mkOption { type = types.bool; default = false; description = '' Whether to log all rejected or dropped incoming packets. This tends to give a lot of log messages, so it's mostly useful for debugging. ''; }; networking.firewall.logRefusedUnicastsOnly = mkOption { type = types.bool; default = true; description = '' If and this option are enabled, then only log packets specifically directed at this machine, i.e., not broadcasts or multicasts. ''; }; networking.firewall.rejectPackets = mkOption { type = types.bool; default = false; description = '' If set, forbidden packets are rejected rather than dropped (ignored). This means that an ICMP "port unreachable" error message is sent back to the client. Rejecting packets makes port scanning somewhat easier. ''; }; networking.firewall.trustedInterfaces = mkOption { type = types.listOf types.string; description = '' Traffic coming in from these interfaces will be accepted unconditionally. ''; }; networking.firewall.allowedTCPPorts = mkOption { default = []; example = [ 22 80 ]; type = types.listOf types.int; description = '' List of TCP ports on which incoming connections are accepted. ''; }; networking.firewall.allowedTCPPortRanges = mkOption { default = []; example = [ { from = 8999; to = 9003; } ]; type = types.listOf (types.attrsOf types.int); description = '' A range of TCP ports on which incoming connections are accepted. ''; }; networking.firewall.allowedUDPPorts = mkOption { default = []; example = [ 53 ]; type = types.listOf types.int; description = '' List of open UDP ports. ''; }; networking.firewall.allowedUDPPortRanges = mkOption { default = []; example = [ { from = 60000; to = 61000; } ]; type = types.listOf (types.attrsOf types.int); description = '' Range of open UDP ports. ''; }; networking.firewall.allowPing = mkOption { default = false; type = types.bool; description = '' Whether to respond to incoming ICMPv4 echo requests ("pings"). ICMPv6 pings are always allowed because the larger address space of IPv6 makes network scanning much less effective. ''; }; networking.firewall.pingLimit = mkOption { default = null; type = types.nullOr (types.separatedString " "); description = '' If pings are allowed, this allows setting rate limits on them. If non-null, this option should be in the form of flags like "-limit 1/minute -limit-burst 5" ''; }; networking.firewall.checkReversePath = mkOption { default = kernelHasRPFilter; type = types.bool; description = '' Performs a reverse path filter test on a packet. If a reply to the packet would not be sent via the same interface that the packet arrived on, it is refused. If using asymmetric routing or other complicated routing, disable this setting and setup your own counter-measures. (needs kernel 3.3+) ''; }; networking.firewall.connectionTrackingModules = mkOption { default = [ "ftp" ]; example = [ "ftp" "irc" "sane" "sip" "tftp" "amanda" "h323" "netbios_sn" "pptp" "snmp" ]; type = types.listOf types.string; description = '' List of connection-tracking helpers that are auto-loaded. The complete list of possible values is given in the example. As helpers can pose as a security risk, it is advised to set this to an empty list and disable the setting networking.firewall.autoLoadConntrackHelpers Loading of helpers is recommended to be done through the new CT target. More info: https://home.regit.org/netfilter-en/secure-use-of-helpers/ ''; }; networking.firewall.autoLoadConntrackHelpers = mkOption { default = true; type = types.bool; description = '' Whether to auto-load connection-tracking helpers. See the description at networking.firewall.connectionTrackingModules (needs kernel 3.5+) ''; }; networking.firewall.extraCommands = mkOption { type = types.lines; default = ""; example = "iptables -A INPUT -p icmp -j ACCEPT"; description = '' Additional shell commands executed as part of the firewall initialisation script. These are executed just before the final "reject" firewall rule is added, so they can be used to allow packets that would otherwise be refused. ''; }; networking.firewall.extraStopCommands = mkOption { type = types.lines; default = ""; example = "iptables -P INPUT ACCEPT"; description = '' Additional shell commands executed as part of the firewall shutdown script. These are executed just after the removal of the nixos input rule, or if the service enters a failed state. ''; }; }; ###### implementation # FIXME: Maybe if `enable' is false, the firewall should still be # built but not started by default? config = mkIf cfg.enable { networking.firewall.trustedInterfaces = [ "lo" ]; environment.systemPackages = [ pkgs.iptables ]; boot.kernelModules = map (x: "nf_conntrack_${x}") cfg.connectionTrackingModules; boot.extraModprobeConfig = optionalString (!cfg.autoLoadConntrackHelpers) '' options nf_conntrack nf_conntrack_helper=0 ''; assertions = [ { assertion = ! cfg.checkReversePath || kernelHasRPFilter; message = "This kernel does not support rpfilter"; } { assertion = cfg.autoLoadConntrackHelpers || kernelCanDisableHelpers; message = "This kernel does not support disabling conntrack helpers"; } ]; systemd.services.firewall = { description = "Firewall"; wantedBy = [ "network.target" ]; after = [ "network-interfaces.target" "systemd-modules-load.service" ]; path = [ pkgs.iptables ]; # FIXME: this module may also try to load kernel modules, but # containers don't have CAP_SYS_MODULE. So the host system had # better have all necessary modules already loaded. unitConfig.ConditionCapability = "CAP_NET_ADMIN"; reloadIfChanged = true; serviceConfig = { Type = "oneshot"; RemainAfterExit = true; ExecStart = "@${startScript} firewall-start"; ExecReload = "@${reloadScript} firewall-reload"; ExecStop = "@${stopScript} firewall-stop"; }; }; }; }