source $stdenv/setup ensureDir $out/bin ensureDir $out/nix-support if test -z "$nativeLibc"; then dynamicLinker="$libc/lib/$dynamicLinker" echo $dynamicLinker > $out/nix-support/dynamic-linker if test -e $libc/lib/32/ld-linux.so.2; then echo $libc/lib/32/ld-linux.so.2 > $out/nix-support/dynamic-linker-m32 fi # The "-B$libc/lib/" flag is a quick hack to force gcc to link # against the crt1.o from our own glibc, rather than the one in # /usr/lib. (This is only an issue when using an `impure' # compiler/linker, i.e., one that searches /usr/lib and so on.) # # Unfortunately, setting -B appears to override the default search # path. Thus, the gcc-specific "../includes-fixed" directory is # now longer searched and glibc's header fails to # compile, because it uses "#include_next " to find the # limits.h file in ../includes-fixed. To remedy the problem, # another -idirafter is necessary to add that directory again. echo "-B$libc/lib/ -idirafter $libc/include -idirafter $gcc/lib/gcc/*/*/include-fixed" > $out/nix-support/libc-cflags echo "-L$libc/lib" > $out/nix-support/libc-ldflags # The dynamic linker is passed in `ldflagsBefore' to allow # explicit overrides of the dynamic linker by callers to gcc/ld # (the *last* value counts, so ours should come first). echo "-dynamic-linker $dynamicLinker" > $out/nix-support/libc-ldflags-before fi if test -n "$nativeTools"; then gccPath="$nativePrefix/bin" ldPath="$nativePrefix/bin" else if test -e "$gcc/lib64"; then gccLDFlags="$gccLDFlags -L$gcc/lib64" fi gccLDFlags="$gccLDFlags -L$gcc/lib -L$zlib/lib" echo "$gccLDFlags" > $out/nix-support/gcc-ldflags # GCC shows $gcc/lib in `gcc -print-search-dirs', but not # $gcc/lib64 (even though it does actually search there...).. # This confuses libtool. So add it to the compiler tool search # path explicitly. if test -e "$gcc/lib64"; then gccCFlags="$gccCFlags -B$gcc/lib64" fi echo "$gccCFlags" > $out/nix-support/gcc-cflags gccPath="$gcc/bin" ldPath="$binutils/bin" fi doSubstitute() { local src=$1 local dst=$2 # Can't use substitute() here, because replace may not have been # built yet (in the bootstrap). sed \ -e "s^@out@^$out^g" \ -e "s^@shell@^$shell^g" \ -e "s^@gcc@^$gcc^g" \ -e "s^@gccProg@^$gccProg^g" \ -e "s^@binutils@^$binutils^g" \ -e "s^@coreutils@^$coreutils^g" \ -e "s^@libc@^$libc^g" \ -e "s^@ld@^$ldPath/ld^g" \ < "$src" > "$dst" } # Make wrapper scripts around gcc, g++, and gfortran. Also make symlinks # cc, c++, and f77. mkGccWrapper() { local dst=$1 local src=$2 if ! test -f "$src"; then echo "$src does not exist (skipping)" return 1 fi gccProg="$src" doSubstitute "$gccWrapper" "$dst" chmod +x "$dst" } if mkGccWrapper $out/bin/gcc $gccPath/gcc then ln -sv gcc $out/bin/cc fi if mkGccWrapper $out/bin/g++ $gccPath/g++ then ln -sv g++ $out/bin/c++ fi if mkGccWrapper $out/bin/gfortran $gccPath/gfortran then ln -sv gfortran $out/bin/g77 ln -sv gfortran $out/bin/f77 fi mkGccWrapper $out/bin/gcj $gccPath/gcj || true if [ -f $gccPath/ghdl ]; then ln -sf $gccPath/ghdl $out/bin/ghdl fi # Create a symlink to as (the assembler). This is useful when a # gcc-wrapper is installed in a user environment, as it ensures that # the right assembler is called. ln -s $ldPath/as $out/bin/as # Make a wrapper around the linker. doSubstitute "$ldWrapper" "$out/bin/ld" chmod +x "$out/bin/ld" # Emit a setup hook. Also store the path to the original GCC and # Glibc. test -n "$gcc" && echo $gcc > $out/nix-support/orig-gcc test -n "$libc" && echo $libc > $out/nix-support/orig-libc doSubstitute "$addFlags" "$out/nix-support/add-flags.sh" doSubstitute "$setupHook" "$out/nix-support/setup-hook" cp -p $utils $out/nix-support/utils.sh # Propagate the wrapped gcc so that if you install the wrapper, you get # tools like gcov, the manpages, etc. as well (including for binutils # and Glibc). if test -z "$nativeTools"; then echo $gcc $binutils $libc > $out/nix-support/propagated-user-env-packages fi