nixpkgs/nixos/modules/virtualisation/containers.nix

353 lines
11 KiB
Nix
Raw Normal View History

{ config, lib, pkgs, ... }:
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
with lib;
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
let
nixos-container = pkgs.substituteAll {
name = "nixos-container";
dir = "bin";
isExecutable = true;
src = ./nixos-container.pl;
perl = "${pkgs.perl}/bin/perl -I${pkgs.perlPackages.FileSlurp}/lib/perl5/site_perl";
inherit (pkgs) utillinux;
};
# The container's init script, a small wrapper around the regular
# NixOS stage-2 init script.
containerInit = pkgs.writeScript "container-init"
''
#! ${pkgs.stdenv.shell} -e
# Initialise the container side of the veth pair.
if [ "$PRIVATE_NETWORK" = 1 ]; then
ip link set host0 name eth0
ip link set dev eth0 up
if [ -n "$HOST_ADDRESS" ]; then
ip route add $HOST_ADDRESS dev eth0
ip route add default via $HOST_ADDRESS
fi
if [ -n "$LOCAL_ADDRESS" ]; then
ip addr add $LOCAL_ADDRESS dev eth0
fi
fi
# Start the regular stage 1 script, passing the bind-mounted
# notification socket from the host to allow the container
# systemd to signal readiness to the host systemd.
NOTIFY_SOCKET=/var/lib/private/host-notify exec "$1"
'';
system = config.nixpkgs.system;
in
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
{
options = {
boot.isContainer = mkOption {
type = types.bool;
default = false;
description = ''
Whether this NixOS machine is a lightweight container running
in another NixOS system.
'';
};
containers = mkOption {
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
type = types.attrsOf (types.submodule (
{ config, options, name, ... }:
{
options = {
config = mkOption {
description = ''
A specification of the desired configuration of this
container, as a NixOS module.
'';
};
path = mkOption {
type = types.path;
example = "/nix/var/nix/profiles/containers/webserver";
description = ''
As an alternative to specifying
<option>config</option>, you can specify the path to
the evaluated NixOS system configuration, typically a
symlink to a system profile.
'';
};
privateNetwork = mkOption {
type = types.bool;
default = false;
description = ''
Whether to give the container its own private virtual
Ethernet interface. The interface is called
<literal>eth0</literal>, and is hooked up to the interface
<literal>ve-<replaceable>container-name</replaceable></literal>
on the host. If this option is not set, then the
container shares the network interfaces of the host,
and can bind to any port on any interface.
'';
};
hostAddress = mkOption {
type = types.nullOr types.string;
default = null;
example = "10.231.136.1";
description = ''
The IPv4 address assigned to the host interface.
'';
};
localAddress = mkOption {
type = types.nullOr types.string;
default = null;
example = "10.231.136.2";
description = ''
The IPv4 address assigned to <literal>eth0</literal>
in the container.
'';
};
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
};
config = mkMerge
[ (mkIf options.config.isDefined {
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
path = (import ../../lib/eval-config.nix {
inherit system;
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
modules =
let extraConfig =
{ boot.isContainer = true;
networking.hostName = mkDefault name;
2014-03-18 11:39:51 +01:00
networking.useDHCP = false;
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
};
in [ extraConfig config.config ];
prefix = [ "containers" name ];
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
}).config.system.build.toplevel;
})
];
}));
default = {};
example = literalExample
''
{ webserver =
{ path = "/nix/var/nix/profiles/webserver";
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
};
database =
{ config =
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
{ config, pkgs, ... }:
{ services.postgresql.enable = true;
services.postgresql.package = pkgs.postgresql92;
};
};
}
'';
description = ''
A set of NixOS system configurations to be run as lightweight
containers. Each container appears as a service
<literal>container-<replaceable>name</replaceable></literal>
on the host system, allowing it to be started and stopped via
<command>systemctl</command> .
'';
};
};
config = mkIf (!config.boot.isContainer) {
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
systemd.services."container@" =
2014-03-20 15:09:38 +01:00
{ description = "Container '%i'";
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
2014-03-20 15:09:38 +01:00
unitConfig.RequiresMountsFor = [ "/var/lib/containers/%i" ];
path = [ pkgs.iproute ];
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
2014-03-20 15:09:38 +01:00
environment.INSTANCE = "%i";
environment.root = "/var/lib/containers/%i";
preStart =
''
2014-08-12 03:05:27 +02:00
# Clean up existing machined registration and interfaces.
machinectl terminate "$INSTANCE" 2> /dev/null || true
2014-08-12 03:05:27 +02:00
if [ "$PRIVATE_NETWORK" = 1 ]; then
ip link del dev "ve-$INSTANCE" 2> /dev/null || true
fi
2014-08-12 03:05:27 +02:00
if [ "$PRIVATE_NETWORK" = 1 ]; then
ip link del dev "ve-$INSTANCE" 2> /dev/null || true
fi
'';
script =
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
''
mkdir -p -m 0755 "$root/etc" "$root/var/lib"
mkdir -p -m 0700 "$root/var/lib/private"
if ! [ -e "$root/etc/os-release" ]; then
touch "$root/etc/os-release"
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
fi
mkdir -p -m 0755 \
"/nix/var/nix/profiles/per-container/$INSTANCE" \
"/nix/var/nix/gcroots/per-container/$INSTANCE"
cp -f /etc/resolv.conf "$root/etc/resolv.conf"
if [ "$PRIVATE_NETWORK" = 1 ]; then
extraFlags+=" --network-veth"
fi
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
for iface in $MACVLANS; do
extraFlags+=" --network-macvlan=$iface"
done
# If the host is 64-bit and the container is 32-bit, add a
# --personality flag.
${optionalString (config.nixpkgs.system == "x86_64-linux") ''
if [ "$(< ''${SYSTEM_PATH:-/nix/var/nix/profiles/per-container/$INSTANCE/system}/system)" = i686-linux ]; then
extraFlags+=" --personality=x86"
fi
''}
# Run systemd-nspawn without startup notification (we'll
# wait for the container systemd to signal readiness).
EXIT_ON_REBOOT=1 NOTIFY_SOCKET= \
exec ${config.systemd.package}/bin/systemd-nspawn \
--keep-unit \
-M "$INSTANCE" -D "$root" $extraFlags \
--bind-ro=/nix/store \
--bind-ro=/nix/var/nix/db \
--bind-ro=/nix/var/nix/daemon-socket \
--bind=/run/systemd/notify:/var/lib/private/host-notify \
--bind="/nix/var/nix/profiles/per-container/$INSTANCE:/nix/var/nix/profiles" \
--bind="/nix/var/nix/gcroots/per-container/$INSTANCE:/nix/var/nix/gcroots" \
--setenv PRIVATE_NETWORK="$PRIVATE_NETWORK" \
--setenv HOST_ADDRESS="$HOST_ADDRESS" \
--setenv LOCAL_ADDRESS="$LOCAL_ADDRESS" \
--setenv PATH="$PATH" \
${containerInit} "''${SYSTEM_PATH:-/nix/var/nix/profiles/system}/init"
'';
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
postStart =
''
if [ "$PRIVATE_NETWORK" = 1 ]; then
ifaceHost=ve-$INSTANCE
ip link set dev $ifaceHost up
if [ -n "$HOST_ADDRESS" ]; then
ip addr add $HOST_ADDRESS dev $ifaceHost
fi
if [ -n "$LOCAL_ADDRESS" ]; then
ip route add $LOCAL_ADDRESS dev $ifaceHost
fi
fi
# This blocks until the container-startup-done service
# writes something to this pipe. FIXME: it also hangs
# until the start timeout expires if systemd-nspawn exits.
read x < $root/var/lib/startup-done
rm -f $root/var/lib/startup-done
'';
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
preStop =
''
machinectl poweroff "$INSTANCE" || true
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
'';
restartIfChanged = false;
#reloadIfChanged = true; # FIXME
serviceConfig = {
ExecReload = pkgs.writeScript "reload-container"
''
#! ${pkgs.stdenv.shell} -e
${nixos-container}/bin/nixos-container run "$INSTANCE" -- \
bash --login -c "/nix/var/nix/profiles/system/bin/switch-to-configuration test"
'';
SyslogIdentifier = "container %i";
EnvironmentFile = "-/etc/containers/%i.conf";
Type = "notify";
NotifyAccess = "all";
# Note that on reboot, systemd-nspawn returns 10, so this
# unit will be restarted. On poweroff, it returns 0, so the
# unit won't be restarted.
Restart = "on-failure";
# Hack: we don't want to kill systemd-nspawn, since we call
# "machinectl poweroff" in preStop to shut down the
# container cleanly. But systemd requires sending a signal
# (at least if we want remaining processes to be killed
# after the timeout). So send an ignored signal.
KillMode = "mixed";
KillSignal = "WINCH";
};
};
# Generate a configuration file in /etc/containers for each
# container so that container@.target can get the container
# configuration.
environment.etc = mapAttrs' (name: cfg: nameValuePair "containers/${name}.conf"
{ text =
''
SYSTEM_PATH=${cfg.path}
${optionalString cfg.privateNetwork ''
PRIVATE_NETWORK=1
${optionalString (cfg.hostAddress != null) ''
HOST_ADDRESS=${cfg.hostAddress}
''}
${optionalString (cfg.localAddress != null) ''
LOCAL_ADDRESS=${cfg.localAddress}
''}
''}
'';
}) config.containers;
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
2014-04-10 14:57:40 +02:00
# FIXME: auto-start containers.
# Generate /etc/hosts entries for the containers.
networking.extraHosts = concatStrings (mapAttrsToList (name: cfg: optionalString (cfg.localAddress != null)
''
${cfg.localAddress} ${name}.containers
'') config.containers);
networking.dhcpcd.denyInterfaces = [ "ve-*" ];
environment.systemPackages = [ nixos-container ];
2014-08-18 14:04:39 +02:00
# Start containers at boot time.
systemd.services.all-containers =
{ description = "All Containers";
wantedBy = [ "multi-user.target" ];
unitConfig.ConditionDirectoryNotEmpty = "/etc/containers";
2014-08-18 14:04:39 +02:00
serviceConfig.Type = "oneshot";
script =
''
res=0
shopt -s nullglob
2014-08-18 14:04:39 +02:00
for i in /etc/containers/*.conf; do
AUTO_START=
source "$i"
if [ "$AUTO_START" = 1 ]; then
systemctl start "container@$(basename "$i" .conf).service" || res=1
fi
done
exit $res
''; # */
};
Add support for lightweight NixOS containers You can now say: systemd.containers.foo.config = { services.openssh.enable = true; services.openssh.ports = [ 2022 ]; users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ]; }; which defines a NixOS instance with the given configuration running inside a lightweight container. You can also manage the configuration of the container independently from the host: systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo"; where "path" is a NixOS system profile. It can be created/updated by doing: $ nix-env --set -p /nix/var/nix/profiles/containers/foo \ -f '<nixos>' -A system -I nixos-config=foo.nix The container configuration (foo.nix) should define boot.isContainer = true; to optimise away the building of a kernel and initrd. This is done automatically when using the "config" route. On the host, a lightweight container appears as the service "container-<name>.service". The container is like a regular NixOS (virtual) machine, except that it doesn't have its own kernel. It has its own root file system (by default /var/lib/containers/<name>), but shares the Nix store of the host (as a read-only bind mount). It also has access to the network devices of the host. Currently, if the configuration of the container changes, running "nixos-rebuild switch" on the host will cause the container to be rebooted. In the future we may want to send some message to the container so that it can activate the new container configuration without rebooting. Containers are not perfectly isolated yet. In particular, the host's /sys/fs/cgroup is mounted (writable!) in the guest.
2013-11-27 16:54:20 +01:00
};
}